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NuSTAR: Grefenstette et al. 2014
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Time after bounce = 0.0001 seconds




Mechanisms of Explosion

Direct Hydrodynamic Mechanism: always fails
Neutrino-Driven Wind Mechanism, ~1D; Low-mass progenitors

2D Convection Neutrino-driven (circa 1995-2009)
(“SASI” not a mechanism, but a shock instability)

Neutrino-Driven Jet/Wind Mechanism, Rapidly rotating AIC of White Dwarf
MHD/Rapid Rotation - “Hypernovae”?

Acoustic Power/Core-oscillation Mechanism? (Aborted if neutrino
mechanism works earlier; Weinberg & Quataert ?)

3D “Convection” Neutrino-driven Mechanism



Important Ingredients/Physics

Progenitor Models (and initial perturbations?)

Multi-D Hydrodynamics (3D)

Multi-D Neutrino Transport (multi-D) (most challenging aspect)
Instabilities - Neutrino-Driven Convection (+ SASI?)

Neutrino Processes - Cross sections, emissivities, etc. (at high densities?)

General Relativity (May & White; Schwartz; Bruenn et al.; Mueller et al.; Kotake et
al.)

Must do 3D radiation/hydrodynamics — “6D” or 7D (full Boltzmann, not yet)
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Bruenn et al. (2014) Explosions -1D “ray-by-ray” transport
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Sub-energetic, even if they actually explode



Marek & Janka 2009 and Muller, Janka, & Marek 2012:
1D “ray-by-ray” transport, 2D hydro:
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3D not exploding, when 2D did (Muller
and Janka 2012/2013; Bruenn et al. 2013)

Problems: RbR; 2D vs. 3D turbulent
Pressure?
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Shock Radii 1D-2D Comparison (Castro): MGFLD with
multi-dimensional transport (no ray-by-ray)

Burrows et al. 2013; Dolence et al. 2013
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Problems with All Extant 2D and 3D
Explosions Models

Ray-by-ray+ Reduced Transport — Doing multiple 1D radial transport solves for a
multi-D problem. Errors ~10-100%

Explosions models are generally underenergetic
Excising cores, or doing central calculation in 1D

Low spatial resolution in 2D and 3D — higher resolution can turn an explosion into a
dud

No relativistic transport in multi-D, or fake GR (gravity + redshift (?))
Multi-angle, multi-group calculations are currently too expensive for 3D

Groups that say they are incorporating the same physics and methodologies are
getting (very) different results in 2D and 3D

Progenitors only in 1D (one exception) — initial structures and perturbations?



2D and 3D Models are Very Different



3D 2D

Couch 2012



Comparison of 2D with 3D

Time = 0,200 5 3D L=2.1 Time = 0,504 5 3D L=2.1 Time = 1,000 5

500 km
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Character of 3D turbulence and Explosion Very
Different from those 1in 2D
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Possible Problems with “Ray-by-ray”
Pseudo-Transport

Ray-by-ray May Exaggerate
Angular and Temporal Variation
in Neutrino Fluxes and Heating



100 km Time after bounce=-169.5 ms

2D (Castro): MGFLD with multi-D Transport (no ray-by-ray)



Brandt et al. 2011 - Multi-Angle, Multi-Group,
2D Transport

= E,. 16 MeV
== E,, 21 MeV
= B, 27 MeV

R = 100 km




Sample Computational Requirements for Future Core-Collapse
Supernova Simulations

Platform |Space | Neutrino | #f Matrix | Ops./At
Current 256x32x64 | 8x12x14 20 GB 2TB 6x1012
Near-Term | 512x64x128 | 12x24x20 600 GB 200 TB 2x101°
Exa-Scale |512x128x256 | 24x24x24 |6 TB 3 PB 8x1016
“Full 512x128x256 | 24x24x24 |6 TB 80 PB 4x1019
Coupling”

Kotake et al. 2012




Cycle and Memory Requirements for Supernova Simulations

1985 (1D) - per run; 10 Gbytes memory

1995 (low 2D) - per run; 100 Gbytes memory

2005 (medium 2D) - per run; 102 cores; Thytes memory

2010 (low 3D) - per run; ; Tbytes memory
2015 (medium 3D) - per run; ; 0.2-1 Pbytes memory

2020 (~heroic 3D) - per run; ; >10 Pbytes memory



VULCAN/2D Multi-Group,Multi-Angle,
Time-dependent Boltzmann/Hydro (6D)

Only code with multi-D, multi-angle transport used in supernova theory
Arbitrary Lagrangian-Eulerian (ALE); remapping

6 - dimensional (1(time) + 2(space) + 2(angles) + 1(energy-group))
Moving Mesh, Arbitrary Grid; Core motion (kicks?)

2D multi-group, multi-angle, S, (~150 angles), time-dependent, implicit
transport - Ott et al. 2009

2D MIGFLD, rotating version (quite fast)

Poisson gravity solver

Axially-symmetric; Rotation

MHD version (“2.5D”) - div B = 0 to machine accuracy; torques
Flux-conservative; smooth matching to diffusion limit

Parallelized in energy groups; almost perfect parallelism

Livne, Burrows et al. (2004,2007a)

Burrows et al. (2006,2007b), Ott et al. (2005,2008); Dessart et al. 2005ab,
2006



CASTRO - 3D AMR, Multi-Group
Radiation-Hydrodynamic Supernova Code

2nd-order, Eulerian, unsplit, compressible hydro

PPM and piecewise-linear methodologies

Multi-grid Poisson solver for gravity

Multi-component advection scheme with reactions

Adaptive Mesh Refinement (AMR) - flow control, memory management, grid generation
Block-structured hierarchical grids

Subcycles in time (multiple timestepping - coarse, fine)

Sophisticated synchronization algorithm

BoxLib software infrastructure, with functionality for serial distributed and shared memory
architectures

1D (cartestian, cylindrical, spherical); 2D (Cartesian, cylindrical); 3D (Cartesian)

Transport is a conservative implementation of flux-limited diffusion, with v/c terms and
inelastic scattering

Uses scalable linear solvers (e.g., hypre) with high-performance preconditioners that feature
parallel multi-grid and Krylov-based iterative methods - challenging!






CASTRO Radiation/Hydro: Strong Scaling in 3D
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FORNAX: 1D,2D,3D, Multi-Group,
Explicit Radiation/Hydrodynamics, (“6”D)

Solves the Two-Moment Transport Equations, with 2" and 39 moment
closures (not “ray-by-ray”); second-order accurate in space and time

Explicit Riemann Godunov-like solution to the Transport operator

Terms of O(v/c) included in transport

Implicit solution to the local transport source terms

Explicit Newtonian hydro; full energy and momentum couplings — HLLC
Conserves energy, momentum, and lepton number to machine precision
Very good energy conservation with gravity included

“6"— Dim. = 1(time) + 3(space) + 1(energy-group) + vector Flux
Logically spherical coordinates — general metric/covariant formulation
Multipole Gravity (can include GR-like modifications to the monopole)

Multi-D calculated to the center - Core refinement (“inverse spider grid”) —
improves timestepping by many factors (!); static mesh refinement

For 2D, Axisymmetry — Rotation can be included (conserving angular
momentum to machine precision)

Good strong scaling in core count and scaling in energy group (linear)
Result: Fast multi-D supernova code (by factor of ~10 x CASTRO)
Burrows & Dolence 2015 ; Dolence & Burrows 2015
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FORNAX:

Strong Scaling in 3D
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Pseudocolor
Var: entropy
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Summary: Advantages of Fornax

. No global solves!! — no need for Krylov subspace methods

. Linear scaling with energy group number (not quadratic)

. Almost perfect strong scaling with core count to 100,000 — 200,000 cores

. Speed-up by at least a factor of ~¥10 over implicit solvers and codes

. Written in covariant form; general coordinate system

. Inverse spider grid — static mesh refinement

. Can include the core without suffering from spherical-coordinate Courant (CFL)

time step problem — fully 3D down to the center

Enabled in the supernova problem by the fact that the speed of sound is not far from
the speed of light
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